We show that in decentralized federated learning, even if you lose an agent,

you can still converge to a well-performing model
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e Privacy: Data can't be shared directly (e.g., hospitals, regulations) /71

e Solution: Use distributed learning to share models, not data
e Objective: Converge to a well-performing model on all agents

Problem Setting

e Data distribution: Each agent has access to some unique data
e Collaboration: Agents share latest models with their neighbors
e Regularization: Agents consider neighbors’ models in their loss
e Challenge: One agent may be permanently lost during training

Idea

e Use the destroyed agent's model to create its virtual copy
e Approximate training data distribution via model-inversion attack
e Deploy new virtual agent with created synthetic dataset

Model-inversion attack

Original and synthetic data

Method

Artificial data points after optimization

e Every agent optimizes the same loss function via GD
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e Optimize synthetic data points until the gradient of the loss
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Convergence e Use the new synthetic dataset to train the model of the
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Conclusions
Results
e Active strategies with virtual agents lead to better results Iris
e |IBE on average is the best aid for agent loss Reference | Drop Last Random IBE DLG CPL
* DLG and CPL perform worse than IBE, but there is room for ADPSGD 047 £0.18 | 034 £0.05 036+0.06 041+0.16 051+022 040+0.16 0.42+0.11
improvement Ta 8rad|ent estimation technique DFedAng 098 +£0.02 | 0.77 £0.12 0.77+0.12 081 +006 094 +0.02 083+0.11 0.83+4+0.10
: : . : DJAM 090+0.09 | 074 £0.24 062+0.13 070+0.10 094 +£0.03 0.65+0.14 0.70 £ 0.08
o Further investigation into more complex datasets is needed (see FSR 0.97 +0.02 | 0.96 £0.03 096+0.03 0.93+0.01 096001 097+0.03 0.97+0.03
additional results on the website)
e Theorethical analysis is crucial going forward Wine
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e DFedAvgM 098 +0.01 | 0.81 £0.15 0.81 £0.15 0.84+0.05 093 +£0.03 0.90+0.07 0.91 4+ 0.06
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