We show that in decentralized federated learning, even if you lose an agent, you can still converge to a well-performing model

Adaptive Fill-in: How to Mitigate the Loss of an Agent in Decentralized Federated Learning

Ignacy Stępka, Kacper Trębacz, Nicholas Gisolfi, James K. Miller, Artur Dubrawski Carnegie Mellon University, Pittsburgh, PA, USA

Motivation

- **Privacy:** Data can't be shared directly (e.g., hospitals, regulations)
- Solution: Use distributed learning to share models, not data
- Objective: Converge to a well-performing model on all agents

Problem Setting

- Data distribution: Each agent has access to some unique data
- Collaboration: Agents share latest models with their neighbors
- Regularization: Agents consider neighbors' models in their loss
- Challenge: One agent may be permanently lost during training

Idea

- Use the destroyed agent's model to create its virtual copy
- Approximate training data distribution via model-inversion attack
- Deploy new virtual agent with created synthetic dataset

Method

Every agent optimizes the same loss function via GD

$$\theta^{t+1} := \theta^t - \eta \nabla_{\theta^t} L(\theta^t; X, Y)$$

 After each communication round, agents train their model on local data until it (approx) converges to a local stationary point

$$\nabla_{\theta} \mathcal{L}_d(\theta, X, Y) - \epsilon = 0$$

Create synthetic data points with random labels

$$X_{\rm synth} \sim {\rm Uniform}[0,1] \quad Y_{\rm synth} \sim {\rm Uniform}\{0,1,...,C\}$$

 Optimize synthetic data points until the gradient of the loss function w.r.t. parameters is again zero using:

$$X_{\mathrm{synth}}^{t+1} := X_{\mathrm{synth}}^t - \eta \nabla_{X_{\mathrm{synth}}^t} L(\theta; X_{\mathrm{synth}}^t, Y_{\mathrm{synth}})$$

 Use the new synthetic dataset to train the model of the neighbor and proceed with the distributed optimization process

Gradient Leakage based attack methods

Implicit Bias Exploitation (IBE)

$$\mathcal{L}_{IBE} = \mathcal{L}_d + \lambda \mathcal{L}_{prior}$$

Deep Leakage Gradient (DLG) [5]

$$\mathcal{L}_{DLG} = \|\nabla W' - \nabla W\|^2 + \lambda \mathcal{L}_{prior}$$
• Chefit Private Leakage (CPL) [0]

Gradient from update history

 $\mathcal{L}_{prior} = \sum \text{ReLU}(x-1) + \text{ReLU}(-x)$

Prior term (optional)

$$\mathcal{L}_{CPL} = \|\nabla W' - \nabla W\|^2 + \lambda_1 \|f(x_{synth}) - \hat{y}\|^2 + \lambda_2 \mathcal{L}_{prior}$$

Conclusions

- Active strategies with virtual agents lead to better results
- IBE on average is the best aid for agent loss
- DLG and CPL perform worse than IBE, but there is room for improvement in gradient estimation technique
- Further investigation into more complex datasets is needed (see additional results on the website)
- Theorethical analysis is crucial going forward

References

[1] Ovi et al. 2023 "A Comprehensive Study of Gradient Inversion Attacks in Federated Learning and Baseline Defense Strategies"

[2] Almeida et al. 2018 "Distributed Jacobi Asynchronous Method for Learning Personal Models"

[3] Tsun et al. 2021 "Decentralized Federated Averaging"

[4] Good 2024 "Trustworthy Learning using Uncertain Interpretation of Data"

[5] Zhu et al. 2019 "Deep Leakage from Gradients"

[6] Wei et al. 2020 "Framework for Evaluating Gradient Leakage Attacks in Federated Learning"

Results

	Reference	Drop	Last	Random	IBE	DLG	CPL
ADDCCD	0.47 0.19			0.41 0.16			
ADPSGD	0.47 ± 0.18	0.34 ± 0.05	0.36 ± 0.06	0.41 ± 0.16	0.51 ± 0.22	0.40 ± 0.16	0.42 ± 0.1
DFedAvgM	0.98 ± 0.02	0.77 ± 0.12	0.77 ± 0.12	0.81 ± 0.06	$\textbf{0.94} \pm \textbf{0.02}$	0.83 ± 0.11	0.83 ± 0.1
DJAM	0.90 ± 0.09	0.74 ± 0.24	0.62 ± 0.13	0.70 ± 0.10	0.94 ± 0.03	0.65 ± 0.14	0.70 ± 0.0
FSR	0.97 ± 0.02	0.96 ± 0.03	0.96 ± 0.03	0.93 ± 0.01	0.96 ± 0.01	$\textbf{0.97} \pm \textbf{0.03}$	0.97 ± 0.0
Vine	Reference	Drop	Last	Random	IBE	DLG	CPL
ADPSGD	Reference 0.47 ± 0.13	Drop 0.43 ± 0.17	Last 0.44 ± 0.14	Random 0.50 ± 0.15	$\overline{0.54 \pm 0.20}$	$\begin{array}{c} \text{DLG} \\ 0.50 \pm 0.16 \end{array}$	$\frac{\text{CPL}}{0.50 \pm 0.1}$
				and the second s			0,000
ADPSGD	0.47 ± 0.13	0.43 ± 0.17	0.44 ± 0.14	0.50 ± 0.15	0.54 ± 0.20	0.50 ± 0.16	0.50 ± 0.1

Global accuracy on a test set after 300 rounds of peer-to-peer communications. Dense communication graph, best results out of 5-fold hyperparameters search on each method and patching strategy and three random seeds.