

# A SAT-based approach to rigorous verification of Bayesian networks

Ignacy Stępka, Nicholas Gisolfi, Artur Dubrawski

September 13, 2024

#### Content

- Motivation
- Background (DARPA Triage Challenge)
- Compilation & encoding
  - Compilation to an ODD
  - Encoding to a Boolean algebra formulae
- Verification queries
  - High-level idea
  - If-Then
  - Feature Monotonicity
- Use cases

n

• Future work

Slide 2

## Why verification?

- Deploy ML systems in safety-critical real-world applications
- Verify model's adherence to properties desired by subject experts
- Ensure that the model will not ever inflict otherwise easily preventable harm
- Leverage the robust predictive capabilities of ML systems in real-world safety-critical scenarios

Slide 3



# Problem Motivation

Auton Lab

Slide 4

DARPA Triage Challenge







Image source: https://triagechallenge.darpa.mil

Slide 5

## DARPA Triage Challenge

- Mass casualty setting: collapsed building, train crash, terrorist attack etc..
- Limited number of paramedics available right away
- Need: rapid assessment of casualty severity and prioritization (triage) for paramedics to maximize survivability of as many people as possible
- Group of robots equipped with various sensors to feed algorithms assessing vital signs and conditions (e.g., breathing rate, injury patterns)
- Strict and well-established medical guidelines for performing triage (e.g., SALT method)

#### Sketch of the setup



Auton Lab

Slide 6

### What to verify?

#### **SALT Mass Casualty Triage**



Auton

Lab

Slide 7



Auton Lab

Slide 8

# **Bayesian Network**

**Compilation & encoding** 

Auton Lab

Slide 9



#### **Bayesian Network**



• **Structure:** directed acyclic graph (DAG)

- Nodes: Represent random variables
- Edges: Indicate conditional dependencies between variables.
- **Conditional Probability Tables (CPTs):** Each node is associated with a CPT that quantifies the effect of the parent nodes.

**Carnegie Mellon University** 

Image source: https://en.wikipedia.org/wiki/Bayesian\_network

Slide 10

#### Ex. Bayesian Network for Triage





## Let's simplify





## Compilation

#### **Bayesian Network**

#### Multivalued Decision Diagram (MDD)



Shih et al. 2019 " Compiling Bayesian Network Classifiers into Decision Graphs"

Auton Slide 13



#### **Physical Damage** = Severe

**Heart Condition** = Present

**Breathing Condition** = Present





**Carnegie Mellon University** 

Abio et al. 2015 "On cnf encodings of decision diagram"



# **Verification queries**

If-then & feature monotonicity

Slide 16



#### **Template of verification**





## If-then rules (ITR)



Auton Lab

Slide 18

#### If-then rules (ITR)



IF in the box THEN class = 6

Slide 19

Auton Lab

#### Make it a contradiction





#### Verify the assertion



Not pure!

Slide 21

Auton Lab

## If-then rules (ITR)

#### Query:

#### IF

Pulse rate >= Insufficient and Pulse rate confidence >= 50%

#### THEN

Slide 22

Auton Lab Requires immediate treatment >= True

#### Counterexample:

Pulse rate = Insufficient Pulse rate confidence = 75% Breath rate = Good Physical damage = No

Requires immediate treatment = False

## If-then rules (ITR)

**Algorithm 1** If-Then Rules  $(ITR_{M,R,c})$  Verification

| 0                                                   | (,,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,                                    |
|-----------------------------------------------------|---------------------------------------------------------------------|
| Require: M                                          | ▷ Encoded model                                                     |
| <b>Require:</b> $R \triangleright$ Constraints on : | input. In each tuple, the first element is a variable, and          |
| the second is a threshold in                        | ndex.                                                               |
| Require: c                                          | $\triangleright$ Prescribed output (class label)                    |
| 1: $r \leftarrow count(R)$                          | $\triangleright$ Set r to the number of premises in R               |
| 2: $F \leftarrow \emptyset$                         | $\triangleright$ Initialize set F of 'and' separated literals       |
| 3: $CNF_X \leftarrow \emptyset$ .                   | $\triangleright$ Initialize set $CNF_X$ of 'and' separated literals |
| 4: For $i$ from 1 to $r$ :                          | $\triangleright$ Iterate over list of premises                      |
| 1. $X, t \leftarrow R[i]$                           |                                                                     |
| 2. $l \leftarrow card(X)$                           | $\triangleright$ Assign to $l$ the number of unique variable values |
| 3. $C \leftarrow \emptyset$ .                       | $\triangleright$ Initialize set C of 'or' separated literals)       |
| 4. For $j$ from $t$ to $l$ :                        | $\triangleright$ Iterate over X variable values above t             |
| (a) $C \cup X_j$                                    |                                                                     |
| 5. $CNF_X \cup C$ .                                 |                                                                     |
| 5: $F \cup M$                                       | $\triangleright$ Add model                                          |
| 6: $F \cup CNF_X$                                   | $\triangleright$ Add correct constraint ranges                      |
| 7: $F \cup Y_{1-c}$                                 | $\triangleright$ Add the outcome of the undesired class             |
| 8: $ITR_{M,R,c} \leftarrow \text{assert } F$        |                                                                     |

Pulse\_Rate >= Insufficient and Pulse\_Rate\_Confidence >= 50%

#### Feature monotonicity

(partial assignment)

(query)

Given Pulse rate = Low and Heart condition = Present Does **Requires immediate treatment** haves ristrotonic elationship with feature **Pulse rate confidence**?



## Feature monotonicity



**Pulse rate confidence?** 



#### Feature monotonicity

**Algorithm 2** Feature Monotonicity  $(FMO_{M,\phi_{X^*},x_i})$  Verification **Require:** M▷ Encoded model **Require:**  $\phi_X$  $\triangleright$  Partial assignment **Require:**  $x_i$  $\triangleright$  Feature to check the monotonicity on 1: Create three copies of M: M1, M2, M32:  $T \leftarrow \emptyset$  $\triangleright$  Create an empty CNF formula (operator **and** between elements) 3: For t from 1 to 2: 1.  $F \leftarrow \emptyset$   $\triangleright$  Create an empty CNF formula (operator **and** between elements)  $\triangleright$  Add models' literals 2.  $F \cup M1 \cup M2 \cup M3$ 3.  $F \cup \phi_X$  $\triangleright$  Add partial assignment over all variables 4.  $F \cup (i_{x_i}^{M1} < i_{x_i}^{M2})$  > Add inceasing assignment order on  $x_i$  in adjacent models 5.  $F \cup (i_{x_i}^{M2} < i_{x_i}^{M3})$ If t = 1 then (a)  $F \cup (Y^{M2} > Y^{M1})$  $\triangleright$  Add outcome  $\beta_{LHL}$ (b)  $F \cup (Y^{M2} > Y^{M3})$ else: (a)  $F \cup (Y^{M2} < Y^{M1})$  $\triangleright$  Add outcome  $\beta_{HLH}$ (b)  $F \cup (Y^{M2} < Y^{M3})$ 7.  $\tau \leftarrow \text{assert } F$  $\triangleright$  Assert the entire formula and return true or false 8.  $T \cup \neg \tau$  $\triangleright$  Add negation of the verification result 4:  $FMO_{M,\phi_{X^*},x_i} \leftarrow \text{assert } T$  $\triangleright$  Get the final result of the verification query

Slide 26

## Runtime experiments





## Time efficiency

| Model     | Size (nodes) | Compilation<br>time [s] | VQ#1<br>If-then [ms] | VQ#2<br>F. Mono [ms] |  |
|-----------|--------------|-------------------------|----------------------|----------------------|--|
| admission | 5            | 2.39                    | 0.79                 | 16.54 (SAT)          |  |
| asia      | 8            | 2.30                    | 0.38                 | 12.23 (SAT)          |  |
| child     | 20           | 7.12                    | 7.63                 | 33.81 (SAT)          |  |
| corical   | 20           | 7.22                    | 3.61                 | 13.78 (SAT)          |  |
| alarm     | 37           | 253.53                  | 38.34                | 166.08 (SAT)         |  |
| win95pts  | 76           | 315.17                  | 34.94                | 204.21 (SAT)         |  |



# Use case example #1

#### Sanity checks for DARPA Triage





## Verification & improvement lifecycle



Auton Slide 30

### Bayesian Network in DARPA Triage

• Initially no access to any data

Slide 31

- Need to handcraft the structure of the Bayesian network in collaboration with domain experts (i.e., medical professionals)
- Later, probabilities can be adjusted with the actual data
- Generate rules from SALT and domain knowledge
- Iterate on the manual development of the Bayesian network with SALT compliance verification in between iterations
- Later, use the same approach for data-driven version



Actual Bayesian Network employed in the challenge

## Use case example #2

Automated design specifications testing

Auton Lab

Slide 32



## Automated verification & validation

Specify verification queries according to design specifications

or

Discover queries from data, e.g., by extracting "pure" regions from the data

|                    | BN0   | BN1   | BN2   | BN3   | BN4   | BN5   | BN6   | BN7   | BN8   | BN9   |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| UNSAT              | 0     | 1     | 0     | 0     | 7     | 2     | 0     | 3     | 0     | 4     |
| SAT                | 11    | 10    | 11    | 11    | 4     | 9     | 11    | 8     | 11    | 7     |
| Compliance $\%$    | 0.00  | 9.09  | 0.00  | 0.00  | 63.64 | 18.18 | 0.00  | 27.27 | 0.00  | 36.36 |
| Test Accuracy $\%$ | 70.03 | 72.43 | 70.03 | 68.10 | 72.30 | 72.33 | 72.37 | 72.27 | 72.40 | 68.10 |



# Thank you!



Paper & code

Auton Lab

Slide 34

- Contact: istepka@andrew.cmu.edu
- If you find this talk interesting please do reach out and/or star our github repository

# Thank you

