We show that in decentralized federated learning, even if you permanently lose a client, you can still converge to a well-performing consensus model Check out the ## Mitigating Persistent Client Dropout in **Asynchronous Decentralized Federated Learning** Ignacy Stępka, Nicholas Gisolfi, Kacper Trębacz, Artur Dubrawski Carnegie Mellon University, Pittsburgh, PA, USA ### Introduction project website! #### **Motivation** - Privacy: Data can't be shared directly (e.g., hospitals, regulations) - Objective: Converge to a well-performing model on all clients - Challenge: One client may be permanently lost during training #### **Problem Setting** - Data distribution: Each client has access to some unique data - Collaboration: Clients share latest models with their neighbors - Regularization: Clients consider models received from their neighbors in their local optimization #### **Proposed Approach** - 1. Recall the latest model shared by the destroyed client - 2. Approx. training data via a gradient- or model-inversion attack - 3. Deploy a new virtual agent back to the federation who will use the reconstructed synthetic dataset as its local training data But how? ## Mitigation strategies ### Simple strategies #### No action Serves as a sanity check for what would have happened if we don't act after noticing that one of the clients has been lost #### Drop Another sanity check. What if all other clients decide to simply not incorporate lost client's model in their local optimization? #### **Adaptive strategies** #### **Model inversion** $$X' \sim \mathcal{U}[0,1]^d$$ $$Y' \sim \mathcal{U}\{1, C\}$$ $$\mathcal{L}_{MI} = \nabla_{\theta} \mathcal{L}_{d}(\theta, X, Y)$$ $$X'_{t+1} = X'_t - \eta \nabla_{X'_t} \mathcal{L}(\theta, X', Y')$$ #### **Gradient inversion** $X' \sim \mathcal{U}[0,1]^d$ $Y' \sim \mathcal{U}\{1, C\}$ $\mathcal{L}_{GI} = d(\nabla W' - \nabla W)^2 + \lambda \mathcal{L}_{prior}$ ∇W is the observed gradient $\nabla W' = \nabla_{\theta} \mathcal{L}_d(\theta, X', Y)$ $X'_{t+1} = X'_t - \eta \nabla_{X'_t} \mathcal{L}(\theta, X', Y')$ #### Random A sanity check for adaptive strategies. Are model/gradient inversion attacks necessary? What if we simply create a new client with random local training data? ### **Holistic Scheme** - 1. Generate random data 2. Pick your attack's loss term - 3. Run data optimization (reconstruction) - 4. Get the reconstructed data, give it to a new virtual client - 5. Continue your federated learning algorithm ## Main takeaways - On average, adaptive strategies based on data reconstruction outperform baselines and the random adaptive strategy. - The final performance gain is most pronounced in non-iid scenarios, high lighting the importance of recovering client-specific information in heterogeneous federations - Results are consistent across different model types logistic regression, neural network architectures (see appendix) - Results are consistent across different federated learning algorithms -DJAM, Function Space Regularization, DFedAvgM (see appendix) - More research into what makes these adaptive strategies succesfull is needed, e.g., how noisy can the reconstructed data be? does it scale to large models and datasets? ### Final accuracy | | Dataset | Distribution | No action | Forget | Random | Grad inv | Model inv | Reference | |--|---------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------------------------|-----------------| | | wine | iid | 0.96 ± 0.03 | 0.96 ± 0.03 | 0.90 ± 0.06 | 0.97 ± 0.03 | 0.97 ± 0.03 | 0.97 ± 0.03 | | | | non-iid (clusters) | 0.62 ± 0.10 | 0.62 ± 0.10 | 0.64 ± 0.11 | 0.78 ± 0.14 | $\boldsymbol{0.86 \pm 0.10}$ | 0.99 ± 0.02 | | | | non-iid (class) | 0.55 ± 0.01 | 0.55 ± 0.01 | 0.63 ± 0.07 | 0.71 ± 0.08 | $\boldsymbol{0.82 \pm 0.05}$ | 0.97 ± 0.03 | | | iris | iid | 0.90 ± 0.04 | 0.90 ± 0.04 | 0.89 ± 0.09 | 0.92 ± 0.09 | 0.95 ± 0.04 | 0.97 ± 0.04 | | | | non-iid (clusters) | 0.64 ± 0.11 | 0.64 ± 0.11 | 0.70 ± 0.17 | 0.79 ± 0.17 | $\boldsymbol{0.87 \pm 0.12}$ | 0.94 ± 0.05 | | | | non-iid (class) | 0.57 ± 0.04 | 0.57 ± 0.04 | 0.57 ± 0.13 | 0.62 ± 0.10 | $\textbf{0.73} \pm \textbf{0.08}$ | 0.84 ± 0.04 | | | digits | iid | 0.94 ± 0.01 | 0.94 ± 0.01 | 0.94 ± 0.01 | 0.95 ± 0.02 | 0.94 ± 0.02 | 0.95 ± 0.01 | | | | non-iid (clusters) | 0.75 ± 0.04 | 0.75 ± 0.04 | 0.76 ± 0.04 | 0.84 ± 0.06 | $\boldsymbol{0.86 \pm 0.04}$ | 0.95 ± 0.02 | | | | non-iid (class) | 0.55 ± 0.02 | 0.55 ± 0.02 | 0.63 ± 0.05 | 0.69 ± 0.04 | $\boldsymbol{0.75 \pm 0.04}$ | 0.93 ± 0.02 | # **Reconstructed images (digits)** #### References [1] Ovi et al. 2023 "A Comprehensive Study of **Gradient Inversion Attacks in Federated** Learning and Baseline Defense Strategies" [2] Almeida et al. 2018 "Distributed Jacobi Asynchronous Method for Learning Personal Models" [3] Tsun et al. 2021 "Decentralized Federated Averaging" [4] Good 2024 "Trustworthy Learning using Uncertain Interpretation of Data" [5] Zhu et al. 2019 "Deep Leakage from Gradients"