We show that in decentralized federated learning, even if you permanently

lose a client, you can still converge to a well-performing consensus model
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e Privacy: Data can't be shared directly (e.g., hospitals, regulations)
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2: while not converged do
3. for all clients i in parallel do
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Proposed Approach
1.Recall the latest model shared by the destroyed client Global objective
2.Approx. training data via a gradient- or model-inversion attack minimse = 3 LX) st Ry 0n) =0
3.Deploy a new virtual agent back to the federation who will use the

reconstructed synthetic dataset as its local training data

7 Algorithm #1: DJAM (local optimization based) [2] Algorithm #2: Function Space Regularization (Iocallsptimization based) [4] Algorithm #3: Decentralized Federated Averaging (Fed-avg based) [3]
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Mitigation strategies
Simple strategies Convergence plots
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Another sanity check. What if all other clients decide to simply not incorporate lost y - -
client's model in their local optimization? (a) iid (b) non-iid (clusters) (c) non-iid (classes)
Adaptive strategies Final accuracy
Dataset Distribution No action Forget Random Gradinv Model inv | Reference
g
Model inversion Gradient inversion iid 096 +£0.03 096+£0.03 090+£0.06 097003 097+£0.03 | 0.97£0.03
wine non-iid (clusters) | 0.62 +0.10 0.62+0.10 0.64+0.11 0.78+0.14 0.86 +0.10 | 0.99 +0.02
X’ ~Ulo.119 X" ~Ulo, 1]d non-iid (class 0.55+0.01 055+£0.01 0.63+£0.07 0.71+0.08 0.82+0.05 | 0.97+0.03
[0, 1]
Y ~ U iid 0.90+0.04 090004 0.89+£0.09 092+0.09 0.95+0.04 | 0.97 £0.04
Y’ ~ U{1,C) (1€} . .
’ ) ; 1r1S non-iid (clusters) | 0.64 +0.11 0.64 +0.11 0.70+0.17 0.79+0.17 0.87 +£0.12 | 0.94 +0.05
Lo = Vo La(0.X.Y) Lor = d(VW? = V)" + A Lprior non-iid (class) | 0.57 £0.04 0.57+£0.04 0.57+0.13 0.62+0.10 0.73 + 0.08 | 0.84 + 0.04
MIE= T0=di% 2 VW35 the observed Zradient iid 0.94 £0.01 0.94+001 0.94+0.01 0095+0.02 0.94+0.02 | 0.95=0.01
X = X! =1V LO.X. 1) YW =VeLa(6, X 1) digits ~ non-iid (clusters) | 0.75 + 0.04 0.75+0.04 0.76 +0.04 0.84 +0.06 0.86 + 0.04 | 0.95 + 0.02
t+1 = S T VX AR X[y =X; —nVx; L(6,X,Y) non-iid (class) 0.55+0.02 0.55+0.02 0.63+0.05 0.69+0.04 0.75+0.04 | 0.93 +0.02
Random
A sanity check for adaptive strategies. Are model/gradient inversion attacks . . . .
necessary? What if we simply create a new client with random local training data? Simila rity between client models
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Holistic Scheme
1.Generate random data = = =
2.Pick your attack’s loss term 5 ™ 5 10°4 §
3.Run data optimization (reconstruction) D
4.Get the reconstructed data, give it to a new virtual client o
5.Continue your federated learning algorithm
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Main takeaways

e On average, adaptive strategies based on data reconstruction
outperform baselines and the random adaptive strategy.

e The final performance gain is most pronounced in non-iid scenarios,

nigh lighting the importance of recovering client-specific information in

neterogeneous federations

e Results are consistent across different model types - logistic
regression, neural network architectures (see appendix)

e Results are consistent across different federated learning algorithms -
DJAM, Function Space Regularization, DFedAvgM (see appendix)

e More research into what makes these adaptive strategies succesfull is
needed, e.g., how noisy can the reconstructed data be? does it scale to
large models and datasets?
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(h) DFedAvgM - non-iid (clusters)
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