Make your counterfactual explanations robust to model change!

We introduce BetaRCE, a Bayesian-inspired method for generating counterfactual explanations that are robust to model change. It offers
probabilistic guarantees for robustness, works with any model type and allows you to control the robustness-cost trade-off according to your needs!

A quick primer on counterfactuals

Counterfactual explanations (CFs) help
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model's decision boundary. For example, O A ®

if a model classifies a loan application as o o ‘\,|
"rejected," a CF might say, "If your !
monthly income were $200 higher, the

model would classify you as 'approved'."

CFs highlight the minimal changes needed

to flip the model's decision, giving clear,

actionable feedback

Space of Admissible Models (SAM)

Robust counterfactual Eroblem

Imagine that you apply for a loan,
get rejected, and the CF issued by
the bank suggests: 'Increase your
monthly income by $200 to get
approved'. Cool, you follow this
advice, but some time later, when
you reapply, the model has been
updated, and the  original
counterfactual turned out to be
now invalid. This is the problem of
non-robust counterfactuals. Real-
world Al systems change, and we
need explanations that can survive
these updates.

We start from defining SAM, a space

that contains models which you

expect to might see in the future. For 5&:3 ;'g’_b

instance these changes can be as

simple as model retraining + &

architecture modifications / data &

shift / seed change etc. 56:2’
Feel free to skip the
theory clouds!

DEFINITION 2 (SPACE OF ADMISSIBLE MODELS). The space of ad-
missible models My is the probabilistic distribution of all models that
are the result of a complete retraining of the model M using arbitrary
settings from the predefined set of model changes.

O Age: 27
| want to get a loan

O Monthly income: $2000 é

O Account balance: $1200 Raise your monthly
income by $200

O Account debt: $230 _
{®

O Age: 27 ,

Okay! | did what you
O Monthly income: $2200 — asked for )
O Account balance: $1200 Sorry we changed our

model, denied!

O Account debt: $230 (

DEFINITION 1 (ROBUST COUNTERFACTUAL). A counterfactual x/
explaining the prediction of a model M is robust to its change to a
model M’ if x¢/" is classified identically by the original and changed
model: M(x¢f) = M’ (x¢f).

DEFINITION 3 (§-ROBUST COUNTERFACTUAL). A counterfactual
x¢/" is said to be 5-robust if and only if it is robust to change to a
model randomly drawn from the given admissible model space M

DEfi n i n g o b u St ness with probability at least 0.
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Next, we formally define robustness
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erification : :
if M(x) = M’(x) then robust
We perform a simple bootstrap verification to check
whether a counterfactual is (6, a)-robust (Theorem 1) robust ~ B(p)
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We found (Theorem 2) that all three hyperparameters introduced
to derive BetaRCE are entangled by the following formula, which
defines the maximum attainable delta, given fixed k and alpha.
This enables user to set two of these parameters, likely alpha and
delta, and have the third one set automatically to the most

convenient value 1
Omax = ] (1-a)

Main takeaways

e BetaRCE is a post-hoc robust CF generation method providing
probabilistic robustness guarantees in a model-agnostic
manner with interpretable hyperparameters (6 and «)

e Experiments show that target robustness levels are
consistently achieved, validating the theorethical framework

e Empirically we see that BetaRCE outperforms other
robustness-focused methods in robustness-cost tradeoff (see
the extended evaluation in the paper)
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See our paper for quite a lot more visualizations and results!
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